Process Scheduling for the Parallel Desktop

Eitan Frachtenberg
Modeling, Algorithms, and Informatics Group (CCS-3)
Computer and Computational Sciences Division
Los Alamos National Laboratory
eitanf@lanl.gov

Abstract

Commodity hardware and software are growing in-
creasingly more complex, with advances such as chip
heterogeneity and specialization, deeper memory hi-
erarchies, fine-grained power management, and most
importantly, chip parallelism. Similarly, workloads
are growing more concurrent and diverse.  With
this new complezity in hardware and software, pro-
cess scheduling in the operating system (OS) becomes
more challenging. Nevertheless, most commodity OS
schedulers are based on design principles that are 30
years old. This disparity may soon lead to significant
performance degradation. Most significantly, paral-
lel architectures such as multicore chips require more
than scalable OSs: parallel programs require parallel-
aware scheduling.

This paper posits that tmminent changes in hard-
ware and software warrant reevaluating the sched-
uler’s policies in the commodity OS. We discuss and
demonstrate the main issues that the emerging par-
allel desktops are raising for the OS scheduler. We
propose that a new approach to scheduling is re-
quired, applying and generalizing lessons from dif-
ferent domain-specific scheduling algorithms, and in
particular, parallel job scheduling. Future architec-
tures can also assist the OS by providing better infor-
mation on process scheduling requirements.

1 Overview

Commodity computers and the way we use them
changed qualitatively in the last 30 years. The OS,
as the intermediary between hardware and software,
is required to adapt to the changes in hardware, and
the software that uses it. Indeed, many aspects of
commodity OSs, such as networking and storage have
changed concomitantly. Yet the scheduling policies
that lie at the core of the OS remained virtually
unchanged during this time [8, 23], and are in dire
need of modernization. Several important trends in

commodity architectures warrant this change, such
as increased chip parallelism and heterogeneity, the
emergence of power management as a limiting fac-
tor in desktop processors, and more complex mem-
ory hierarchies. Applications and workloads are also
evolving to meet consumer demands and hardware
capabilities, each application with its own scheduling
requirements.

In this paper, we argue that the confluence of
parallelism and diverse workloads on the commod-
ity computer warrants revisiting the scheduler’s poli-
cies. Three postulates support this thesis: commod-
ity hardware is becoming increasingly parallel, the
software running on it will follow suit, and the OS will
need to support these trends, particularly in terms
of scheduling. The main goal of this paper, in Sec-
tions 2-4, is to establish these premises and present
the case and design goals for scheduler moderniza-
tion. Next, Section 5 suggests some principles for the
development of novel scheduling policies. Finally, we
conclude in Section 6.

2 Hardware Trends:
to Concurrency

The Move

The phenomenal growth of microprocessor perfor-
mance has fueled a similarly explosive growth in com-
modity hardware and applications for more than two
decades. However, the growth in single-processor per-
formance is now showing signs of slowing down [25].
Even under optimistic assumptions for the growth
rate of transistor density and processor speed, there
is mounting evidence that the annual single-processor
performance growth rate for the coming years might
not exceed about 15%, contrasted with the rate of
50 — 60% that we enjoyed so far [1, 21, 36].

To maintain high rates of performance growth,
manufacturers are perforce turning to parallelism
[18, 22, 26, 36]. As Hofstee writes on efficiency
per transistor, “The most obvious way to improve

Proceedings of the 8th International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN’05)
1087-4089/05 $20.00 © 2005 IEEE

YF]',F.

COMPUTER

SOCIETY



efficiency is to sacrifice per-thread performance (or
per-thread performance growth)” [22]. Even single-
processor and desktop computers are employing vary-
ing degrees of parallelism, covering the range from su-
perscalar processors, through hyperthreaded (SMT)
and multicore chips (CMP), all the way to multi-
processors (SMP). All the major chip manufactur-
ers already sell dual-core chips [26, 30, 32|, and some
special-purpose chips can even run tens of parallel
hardware threads [24, 33].!

Parallelism in itself will not solve all the prob-
lems that are restricting performance growth. Lim-
iting factors such as energy budget, cooling capacity,
and memory performance will still require innova-
tive design solutions such as heterogeneous cores with
selective shutdown, use of specialized coprocessors,
and moving computation closer to memory. Ubiqui-
tous computers, such as mobile phones, portable mu-
sic and video players, and media-convergence appli-
ances that have strict minimum service requirements
on a low-power, low-performance platform could fur-
ther stress the resource management requirements.
Memory hierarchies are also growing more complex,
e.g., with multicore and hyperthreaded chips. Such
computers are essentially nonuniform memory access
(NUMA) machines, and as such, may impose special
scheduling requirements [4]. Other emerging archi-
tectures include a relatively large number of special-
purpose computing cores, such as the Cell processor
for media applications, the ClearSpeed 96-core chip
for mathematical processing, and the Azul 24-core
chip for Java applications [22, 24, 33].

These architectures will require OS support to al-
locate their resources intelligently. The challenge for
the OS does not end however with hardware abstrac-
tion and arbitration: modern applications could have
significantly diverging scheduling requirements, as is
described in the next section.

3 Software Trends: Interdepen-
dent Tasks

This section asserts that ubiquitous parallel hard-
ware brings with it complex workloads with complex
scheduling requirements, especially as software be-
comes increasingly more parallel.

Two factors have limited the availability of com-

ntel’s Gelsinger predicts that 70% of performance im-
provements will come from parallelism rather than increased
clock speed [18]. Already on the drawing board are multicore
SMTs such as Niagara from Sun (2006), Power6 from IBM,
and Tanglewood from Intel, with up to 32 hardware threads
each, and possibly hundreds later on [24]. Even laptops are
expected to gain dual-core and hyper-threading capabilities by
2006 [26].

modity parallel software to date. First, the desk-
top has remained largely uniprocessor until recently,
thus delaying the main incentive to develop parallel
programs. Second, writing parallel programs is diffi-
cult, and programming technology has not advanced
to the point where parallel programming is common-
place. We have seen in the previous section that par-
allel commodity hardware is no longer an unrealized
promise. The wide availability of parallel hardware
could in turn provide an incentive for, and spark a
growth in, parallel programming. With increasing
demand, powerful new parallel languages and pro-
gramming environments could become widespread.
This paradigm shift has been compared to the 1990s’
move to object-oriented design (OOD), also a tech-
nology that had existed for many years before be-
coming widely used [36]. The comparison permits us
some optimism about this adoption. With increasing
demand, powerful new parallel languages and pro-
gramming environments could become widespread, as
was the case with C+-+ and Java for OOD.

Already a typical uniprocessor desktop with a mul-
titasking OS runs multithreaded applications, mo-
tivated by considerations such as resource overlap-
ping, increased responsiveness, and modularity [13].
These applications range from the multithreaded
Web browser to database and Web servers. Many of
these applications have particular synchronization re-
quirements, e.g., dependency on pipelined concurrent
threads to read, process, and output data. While not
critical on a uniprocessor, on a parallel architecture
these requirements become paramount for efficiency.

The emerging parallel hardware creates a stronger
incentive for concurrency. History shows that soft-
ware makers eagerly respond to additional comput-
ing capacity by developing new, resource-hungry ap-
plications. Some contemporary applications already
benefit from parallel computing power, for example,
parallel searches in terabytes of data, photo and video
editing filters, and technical computing in science and
industry, such as automated design, scientific simula-
tion, financial analysis, etc.

We may soon see several novel desktop applica-
tions that benefit from parallelism. For example, the
combination of smart video recording and process-
ing of multiple streams with parallel on-line local in-
dexing and searching of vast media libraries (DVRs).
User interfaces can be enhanced to include compute-
intensive tasks that are executed concurrently with
other user applications. Gaming, which has been
a driving force in many new commodity technolo-
gies, could lead the pack with intensive and latency-
sensitive parallel computations used to create com-

Proceedings of the 8th International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN’05)
1087-4089/05 $20.00 © 2005 IEEE

YF]',F.

COMPUTER

SOCIETY



plex, realistic game environments?. In fact, all the
next generation game consoles are designed for vari-
ous levels of hardware concurrency.

At this point in time, we can only speculate on
how much more parallel commodity workloads will
become. However, if we accept as basic assumptions
that consumer demand for applications that require
more computing resources exists, and that the main
performance growth in the future will come from par-
allelism, then it follows that commodity workloads
will indeed grow more parallel.

As we see in the next section, concurrency and
special synchronization requirements can yield poor
performance if not properly supported by a paral-
lel scheduler. Scheduling for applications with par-
ticular synchronization needs has been successfully
studied in specific domains. However, unlike OSs on
supercomputers and media players, the commodity
OS cannot assume a relatively homogeneous work-
load. Heterogeneous, parallel, imbalanced, and dy-
namic workloads will impose conflicting requirements
on the scheduler, increasing its importance in the fu-
ture OS.

4 Challenges for the OS

Commodity OSs already run on small multiprocessors
(SMPs) and SMTs, and scheduling is not considered
a particularly dire problem. So if it is not broken,
why fix it?

We reason that contemporary scheduling is indeed
“broken,” and that its inefficiency is currently masked
by the low degree of parallelism and the user’s own
low expectations. But critical scheduling problems
will surface as the degree of parallelism increases.
Even today’s simplest parallel machines, such as
SMTs or small SMPs, already have difficulties with
many applications and workload mixes. For example,
processes that contend for the same resources (e.g.,
the memory bus) can experience an overall slowdown
on a hyperthreaded system, rather than speedups re-
sulting from parallelism and latency hiding [2, 4, 20].

Commodity schedulers are challenged at all levels
of parallel execution, from the thread [4, 35], through
the SMP [2, 12], the cluster [10, 15], all the way
to supercomputers [23]. In particular, parallel pro-
grams suffer tremendously from lack of coscheduling?
[10, 23]. The main reason for this is that processes
in parallel programs—as opposed to sequential and
distributed programs—rely on frequent synchroniza-

2The porting of several game engines to multicore proces-
sors is already underway (see for example http://www.intel.
com/pressroom/archive/releases/20050308net .htm).

3Coscheduling refers to scheduling all of a job’s processes
at the same time, to facilitate synchronization [28].

tion for their progress. The only ways to ensure that
such programs enjoy adequate progress are to let no
other program share their processors or to ensure that
when the parallel program runs, all of its synchroniz-
ing processes are coscheduled. Supercomputers typ-
ically use the former solution and operate in batch
mode [11]. For commodity computers and worksta-
tions that host a multiuser, time-sharing system, this
is not an acceptable solution [27]. A solution based on
coscheduling, whether implicit or explicit, is far more
attractive and practical. Applying coscheduling to
the commodity OS is therefore imperative given the
trends covered in the previous sections.

4.1

To demonstrate the effect of coscheduling, we de-
signed an experiment to isolate the effect of the sched-
uler policy on a small SMP. The experiment con-
sists of a varying number of parallel programs and
sequential stressors. Both types of programs per-
form a memory-less computation, but the sequen-
tial stressors run in an infinite loops, while the par-
allel programs run for a predetermined number of
computation loops. The threads of the parallel pro-
grams synchronize every few compute loops using a
semaphore.* All programs are launched together, and
the experiment ends when all parallel programs ter-
minate. We repeated each experiment a minimum
of five times, discarded the lowest and highest re-
sults, and averaged the remaining run times. Two
schedulers were evaluated: the default underlying OS
scheduler (i.e., with no intervention on our part), and
a rudimentary user-level gang scheduler [10] that sus-
pends and resumes entire jobs in round robin-order.
Note that memory hierarchy effects, I/O subsystems,
and factors other than scheduling that can affect per-
formance are excluded from this experiment. We
predict that with parallel computers, memory band-
width will become an even more critical resource than
it is today, and should be managed by the scheduler
[2, 4].

Figure 1 shows the results obtained on a four-way
HP ES40 SMP with 833MHz Alpha processors, com-
paring the Linux default scheduler to gang schedul-
ing. Observe that as the number of parallel pro-
grams increases, the total run time necessarily also
increases for both schedulers. However, as the num-
ber of sequential stressors increases, the schedulers
exhibit different behavior. With gang scheduling the
run time remains nearly constant, since sequential
jobs are confined to their time slots and do not in-

Coscheduling Example

4This structure follows the bulk-synchronous parallel (BSP)
model, which in practice serves to capture the structure of
many real parallel programs [37].

Proceedings of the 8th International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN’05)
1087-4089/05 $20.00 © 2005 IEEE

YF]',F.

COMPUTER

SOCIETY



Gang
Default

Time (sec)

50
40
30

10

Figure 1: Scheduler comparison on ES40

Gang -~
Default

Time (sec)

50
40
30

10

Figure 2: Scheduler comparison on Potomac

terfere with the parallel programs. When mixed to-
gether however, the Linux scheduler does not guaran-
tee the coscheduling of parallel threads, resulting in
frequent interruption to synchronization and wasted
time spent blocking.

Is coscheduling always appropriate for parallel
jobs? Not necessarily, as Figure 2 demonstrates.
Here, we ran the same experiment on a four-way Intel
Xeon MP 3.3GHz SMP (“Potomac” processors) with
hyperthreading turned on (note that absolute run
times are generally much shorter than on the ES40).
While the OS may regard the virtual processors as in-
dependent processors, hyperthreaded logical proces-
sors do in fact share most of the chip’s resources.
Gang scheduling seven threads per parallel program
on four actual processors results in self-competition
among the threads. And since the threads are homo-

geneous, they often collide requesting the same CPU
functional units [4]. Linux’s rather oblivious sched-
uler outperforms in this example a coscheduling algo-
rithm that is unaware of the architecture’s subtleties.
The reason is that under this oversubscribed gang
scheduler, processes often block for lack of synchro-
nization, but no other jobs can use the processor since
they are currently suspended, resulting in significant
waste.

4.2 Load-Imbalanced Workload

Even a workload that is entirely composed of paral-
lel applications can be ill-suited for most commodity
schedulers, especially if it exhibits load imbalance. To
demonstrate this, we show a set of experiments that
we had previously developed for the evaluation of a
novel scheduling algorithm called Flexible Coschedul-
ing (FCS) [16]. Although FCS was specifically de-
signed to handle large-scale cluster scheduling, we
believe that many of its design principles (some of
which are discussed in the next section) are applica-
ble to desktop parallel scheduling. In a nutshell, the
main strength of FCS are its ability to dynamically
identify the coscheduling requirement of each job and
process, and schedule processes according to these re-
quirements. Consequently, highly synchronous paral-
lel jobs are allocated dedicated time slots so that their
progress is not hindered. On the other hand, less
synchronous jobs employ a variant of a spin-block al-
gorithm in their communications, to reduce internal
fragmentation.

The experiment we use to demonstrate these prin-
ciples uses two dual Itanium nodes connected by the
high-speed QsNet network. The workload consists of
three synthetic applications that iterate computation
and MPI synchronization, similar to the parallel BSP
application of Section 4.1. All three programs have
four communicating processes, with a basic granular-
ity of 1ms. However, we doubled the computation
part of processes 3,4 in job 1 and processes 1,2 in
job 2 to create a load imbalance, so that they take
120s to complete, compared to job’s 3 60s. Note that
the total CPU requirements of all three jobs is about
240s per processor. This workload is depicted in Fig.
3, where the basic iteration of each job is shown.

We compared five different synchronization
schemes using the STORM infrastructure [17]:
(1) Default—the unmodified Linux scheduler; (2)
First-come-first-serve (FCFS), or batch scheduling;
(3) gang scheduling (GS); (4) spin block (SB), which
is a form of implicit coscheduling [3]; and (5) flexible
coscheduling (FCS). We measure the finish time
of each job separately. The maximum end time
(in bold script) represents the makespan (the total

Proceedings of the 8th International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN’05)
1087-4089/05 $20.00 © 2005 IEEE

YF]',F.

COMPUTER

SOCIETY



Job 1 compute

Synchronization < r

Job 2 compute

Synchronization

Job 3 compute P2 | | P3
.
:

Synchronization <
<

Figure 3: Imbalanced parallel workload

| Scheduler [ Job 1 | Job 2 [ Job 3 |

Default 233 233 284
FCFS 120 240 300
GS 303 303 181
SB 210 211 271
FCS 248 248 151

Table 1: Imbalanced workload run times (sec). Num-
bers in bold represent total completion time.

completion time), which is a measure of how tightly
a scheduler packs the jobs: the less fragmentation
it incurs, the shorter the makespan. The results are
summarized in Table 1.

Both FCFS and GS allow each program to run in
dedicated mode on all four processes, whether for
their entire lifetime (FCFS) or for the duration of
a time slot at a time (GS). While job 3 enjoys this
dedicated mode for its synchronization—and in fact
requires it jobs 1 and 2 end up wasting 25% of their
alloted CPU time. Default and SB scheduling display
better CPU utilization, since they are more prone
to deschedule the idle processes of the imbalanced
jobs, letting other processes use the CPU. However,
they fail to coschedule job 3’s processes effectively, re-
sulting in poor synchronization and stalled processes.
FCS avoids both these problems with the combi-
nation of monitoring, classification, and scheduling.
First, it monitors MPI communication to measure
the synchronization effectiveness and requirements of
each process. After a short discovery period, it clas-
sifies job 3 as CS (requires coscheduling), and jobs 1
and 2 as F (prefer, but do not require coscheduling).
This in turn translates to a schedule where job 3 al-

ways receives dedicated time slots (gang-scheduled),
but job 1 and 2’s processes can be descheduled if they
stall too long. This results in an overall run time of
just 8s over the optimal 240s schedule, or about 3%,
compared to 10-30% with the other schedulers. A
more detailed evaluation and analysis of FCS can be
found in our previous reports [15, 16].

4.3 Composite Workload

Lastly, let us consider a different thought experiment
using another small workload (this example may not
necessarily be typical, but presents various potential
problems compactly). Our workload is composed of
three jobs on one dual-core chip: (1) a multi-threaded
Web browser with high data locality, (2) a single-
threaded music player with no data locality, and (3) a
parallel computation with two fine-grain synchronous
threads and medium data locality. Contemporary
commodity schedulers, lacking awareness of paral-
lelism and data locality, might commit any number of
scheduling mistakes: they are not likely to cosched-
ule the threads of job 3, leading to little progress on
that job; they are prone to coschedule jobs 2 and 3,
putting them in competition for memory access; and
they might distribute job 1’s threads over both pro-
cessors, creating cache competition instead of cache
sharing. Worse yet, schedulers such as those found
in some Windows versions will allocate more time to
the foreground job (e.g., the browser) even if it has
the lowest CPU requirement. These mis-scheduling
choices lead to extraneous context switches, wasted
resources, and significantly reduced performance.

4.4 Generalizing the Challenges

Taking a more general view, we observe that paral-
lelization poses two principal challenges to the desk-
top scheduler: (1) processes competing over resources
suffer from degraded performance when coscheduled,
and (2) collaborating processes suffer from degraded
performance when not coscheduled. Architectural
advances could also involve additional considerations
in the future, such as heterogeneity/asymmetry, en-
ergy management, and NUMA, which need to be
accounted for in the scheduling policies. But un-
like classical parallel computers, the presence of
various classes of applications in a single work-
load mix—including interactive and single-threaded
applications—poses a significant additional challenge
on top of the specific application requirements. Ignor-
ing these scheduling considerations can lead to poor
application performance because of lack of synchro-
nization, as well as poor system-wide performance
because of contention for resources [2, 10, 23, 35].
These factors paint a bleak picture for future OS per-

Proceedings of the 8th International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN’05)
1087-4089/05 $20.00 © 2005 IEEE

YF]',F.

COMPUTER

SOCIETY



formance unless they are accounted for in commodity
multiprocessor schedulers. We propose initial guiding
principles to this end in the next section.

5 The Road Ahead: Toward a
Unified Solution

The challenges that schedulers face with the advent
of ubiquitous parallelism and modern workloads add
to the classical scheduling considerations. A consid-
erable body of work has accumulated in specific do-
mains, such as scheduling for soft-real-time systems
[6, 8, 19], SMTs/SMPs [4, 34], and large-scale parallel
machines [9, 11]. Some commercial OSs such as AIX,
HP-UX, and IRIX already address some of these top-
ics. We advocate a more holistic view of the scheduler
as the reconciliator of coexisting synchronization re-
quirements of all application types: sequential, inter-
active, continuous-media, distributed, and parallel.
By generalizing ideas from these domains, we sug-
gest a description of design goals for unified schedul-
ing policies. More details on our proposed policies
can be found in a separate technical report [14].

At the heart of these policies are data gathering
and classification of processes (referring collectively
to all entities of execution). The modern OS already
engages in rudimentary instrumentation and classifi-
cation for scheduling purposes—as is done for block-
ing I/O calls. Nevertheless, the complex hardware
and workloads we face today allow and even require
that we do more in terms of classification. For exam-
ple, process communication and barriers (in and out
of the node) can be used to classify processes based
on their synchronization requirements [3, 5, 15], and
pipelined or producer-consumer relationships can be
traced though system-call usage [38]. Hardware coun-
ters can be used to measure processes’ progress [31]
and co-interference [34]. Recent trends in architec-
tural design may also result in additional hardware
support for process characterization.

To increase cooperation between processes, the
scheduler can then use this classification to make bet-
ter decisions about which processes require coschedul-
ing (collaborative and codependent), require disjoint
scheduling (interfering), or have special timing re-
quirements (interactive).

Classification alone is unlikely to yield optimal
scheduling. The scheduler can also benefit from dy-
namically testing different allocations of time and
space, while monitoring the progress of processes [35].
Different combinations can have significant perfor-
mance impact, especially if heterogeneity or energy
management also come into play [4, 34].

In addition to classification, adaptivity and au-

tomatic detection of successful combinations can
provide an intervention-free, self-tuning scheduler
that perpetually attempts to optimize resource allo-
cation and cost functions. The scheduler must also
adapt to changes in the workload. Adaptivity can be
expressed in various forms, such as choice of schedul-
ing policies, parameters, process priorities, and time-
slot frequency and length [19, 29, 34]. A unified
scheduler should continue to draw from uniprocessor
considerations (priorities, overlap of resources, etc.),
and augment them in a scalable manner with consid-
erations such as synchronization requirements, data
locality, resource contention, and process progress.
Furthermore, such a scheduler can be seamlessly
adapted to cluster and grid environments if its consid-
erations include out-of-box synchronization as well.

Going back to the composite workload example
from Section 4.3, a unified scheduler might classify
job 3 as parallel, given its communication pattern,
and coschedule its processes to run in a dedicated
time slot. Using classification or by testing differ-
ent resource allocations it might determine that jobs
1 and 2 make the most progress when coscheduled
together on different processors: job 1 enjoys high
rates of cache sharing among its threads, while job
2 benefits from nearly-exclusive access to the mem-
ory bus. The scheduler can then adaptively change
the timeslice quantum, to reflect different priorities,
reduce noisiness, and enable interactivity.

Admittedly, such a unified scheduler is likely more
complex than most of today’s schedulers. Much of
this complexity merely reflects the fact that the un-
derlying hardware is becoming more complex. Fur-
thermore, complex scheduling can greatly increase
the symbiosis of processes and overall system perfor-
mance [34], so it should not necessarily be regard as
a disadvantage.

Explicitly addressing parallelism in the OS is an
orthogonal discussion to any OS architectural layout
(e.g. monolithic- vs. micro- vs. exo-kernel). The
main role of any operating system, regardless of the
design philosophy it follows, is to multiplex physical
resources, including the CPU [7]. Scheduling thus re-
mains at the core of the OS, and therefore all but the
most specialized OSs can benefit from any advances
made to better support contemporary hardware and
workloads. The guidelines described here will proba-
bly evolve as prototypes are built. The key concept
remains regardless of the underlying OS architecture:
the scheduler’s mission is to maximize cooperation
between those that benefit from it, while minimizing
interference between those that do not.

Proceedings of the 8th International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN’05)
1087-4089/05 $20.00 © 2005 IEEE

YF]',F.

COMPUTER

SOCIETY



6 Conclusion

As commodity computers and their workloads con-
tinue to evolve, the schedulers that manage them
will grow increasingly inadequate. The aging sched-
ulers’ limitations attract little attention because they
are good enough for single-processor computers. But
with the move to parallel desktops, we can no longer
afford to ignore these limitations. Applying paral-
lel scheduling techniques alone to schedulers will also
not suffice, because these techniques were developed
for much more homogeneous workloads.

Some revitalization efforts have been concentrated
on specific scheduling domains or on developing a new
OS altogether. This paper advocates neither. In-
stead, it proposes that new holistic scheduling tech-
niques be studied and integrated into existing com-
modity OSs. These policies should be dynamic and
handle a wide range of workloads while remaining
transparent to users.

Better scheduling is achieved when the OS has in-
timate understanding of the hardware’s capabilities
and the software’s requirements. With regard to
hardware, the OS should arbitrate between multiple
and possibly heterogeneous resources, while consid-
ering cache and memory-pressure factors. With re-
gard to applications, the OS needs to be cognizant of
all levels of parallel execution: thread, process, and
parallel program, in addition to sequential and inter-
active programs. Schedulers can manage these work-
loads by applying principles from such fields as par-
allel and multimedia scheduling. Of these principles,
cooperation, adaptivity, and classification, in particu-
lar, can play a decisive role in achieving optimal user
experience and utilization on next-generation com-
puters.

Acknowledgements

I wish to thank Kei Davis, Yoav Etsion, Scott Pakin
and Dan Tsafrir for many useful comments on early
versions of this paper.

References

[1] Vikas Agarwal, M. S. Hrishikesh, Stephen W. Keckler,
and Doug Burger. Clock rate versus IPC: the end of the
road for conventional microarchitectures. In 27th Inter-
national Symposium on Computer Architecture (ISCA),
pages 248-259, June 2000. Available from citeseer.ist.
psu.edu/agarwalOOclock.html.

[2] Christos D. Antonopoulos, Dimitrios S. Nikolopoulos, and
Theodore S. Papatheodorou. Scheduling algorithms with
bus bandwidth considerations for SMPs. In 32nd Interna-
tional Conference on Parallel Processing (ICPP), Kaoh-
siung, Taiwan, October 2003. Available from www.cs.wm.
edu/~dsn/papers/icpp03.pdf.

[3] Andrea C. Arpaci-Dusseau. Implicit Coscheduling: Co-
ordinated scheduling with implicit information in dis-
tributed systems. ACM Transactions on Computer
Systems, 19(3):283-331, August 2001. Available from
portal.acm.org/ft_gateway.cfm?id=380764&type=pdf.

[4] James R. Bulpin and Ian A. Pratt. Multiprogramming
performance of the Pentium 4 with hyper-threading. In
Second Annual Workshop on Duplicating, Deconstruc-
tion and Debunking (WDDD), pages 53-62, Munchen,
Germany, June 2004. Available from www.ece.wisc.edu/
~wddd/2004/06 _bulpin.pdf.

[5] Gyu Sang Choi, Jin-Ha Kim, Deniz Ersoz, Andy B. Yoo,
and Chita R. Das. Coscheduling in clusters: is it a vi-
able alternative? In 16th IEEE/ACM Supercomputing,
Pittsburgh, PA, November 2004. Available from www.
sc-conference.org/sc2004/schedule/pdfs/pap125.pdf.

[6] Kenneth J. Duda and David R. Cheriton. Borrowed-
virtual-time (BVT) scheduling: Supporting latency-
sensitive threads in a general-purpose scheduler. In
17th ACM Symposium on Operating Systems Prin-
ciples (SOSP), pages 261-276, Charleston, SC, De-
cember 1999. Available from citeseer.ist.psu.edu/
duda99borrowedvirtualtime.html.

[7] Dawson. R. Engler and M. Frans Kaashoek. Exterminate
all operating system abstractions. In Fifth Workshop on
Hot Topics in Operating Systems (HotOS), pages 78-85,
Orcas Island, WA, May 1995. Available from citeseer.
ist.psu.edu/457928.html.

[8] Yoav Etsion, Dan Tsafrir, and Dror G. Feitelson. Desk-
top scheduling: How can we know what the user wants?
In 14th ACM International Workshop on Network and
Operating Systems Support for Digital Audio and Video
(NOSSDAV), pages 110-115, County Cork, Ireland, June
2004. Available from www.cs.huji.ac.il/~feit/papers/
HuCpri04NOSSDAV.pdf.

[9] Dror G. Feitelson. A survey of scheduling in multipro-
grammed parallel systems. Research Report RC 19790
(87657), IBM T. J. Watson Research Center, October
1994. Revised version August 1997 available from www.
cs.huji.ac.il/"feit/papers/SchedSurvey97TR.ps.gz.

[10] Dror G. Feitelson and Larry Rudolph. Gang scheduling
performance benefits for fine-grain synchronization. Jour-
nal of Parallel and Distributed Computing, 16(4):306—
318, December 1992. Available from www.cs.huji.ac.il/

“feit/papers/GangPerf92JPDC.ps.gz.

Dror G. Feitelson, Larry Rudolph, and Uwe
Schwigelshohn.  Parallel job scheduling — A status
report. In Dror G. Feitelson, Larry Rudolph, and
Uwe Schwiegelshohn, editors, Tenth Workshop on
Job Scheduling Strategies for Parallel Processing,
volume 3277 of Lecture Notes in Computer Science,
pages 1-16. Springer-Verlag, 2004. Available from
www.cs.huji.ac.il/"feit/parsched/.

Krisztian Flautner, Rich Uhlig, Steve Reinhardt, and
Trevor Mudge. Thread-level parallelism and interactive
performance of desktop applications. In Ninth Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS),
number 9, pages 129-138, November 2000. Available from
www.eecs.umich.edu/~tnm/papers/asplos00.pdf.

Krisztian Flautner, Rich Uhlig, Steve Reinhardt, and
Trevor Mudge. Thread-level parallelism of desktop appli-
cations. In Workshop on Multi- Threaded Ezecution, Ar-
chitecture, and Compilers (MTEAC), Toulouse, France,

[11]

[12]

[13]

Proceedings of the 8th International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN’05)
1087-4089/05 $20.00 © 2005 IEEE

YF]',F.

COMPUTER

SOCIETY



[14]

[15]

[16]

[17]

18]

[19]

[20]

(21]

(22]

[23]

[24]

[25]

January 2000. Available from www-cse.ucsd.edu/users/
tullsen/mteac2000/flautner.pdf.gz.

Eitan Frachtenberg. Process coordination for commodity
systems. Technical Report LAUR 04-7256, Los Alamos
National Laboratory, December 2004. Available from wuw.
cs.huji.ac.il/~etcs/pubs/.

Eitan Frachtenberg, Dror G. Feitelson, Fabrizio Petrini,
and Juan Fernandez. Flexible CoScheduling: Mitigat-
ing load imbalance and improving utilization of heteroge-
neous resources. In 17th International Parallel and Dis-
tributed Processing Symposium (IPDPS), Nice, France,
April 2003. Available from www.cs.huji.ac.il/~etcs/
pubs/.

Eitan Frachtenberg, Dror G. Feitelson, Fabrizio Petrini,
and Juan Fernandez. Adaptive parallel job scheduling
with flexible coscheduling. IEEE Transactions on Parallel
and Distributed Systems, To appear. Available from www.
cs.huji.ac.il/"etcs/pubs/.

Eitan Frachtenberg, Fabrizio Petrini, Juan Fernandez,
Scott Pakin, and Salvador Coll. STORM: Lightning-fast
resource management. In 14th IEEE/ACM Supercom-
puting, Baltimore, MD, November 2002. Available from
www.cs.huji.ac.il/"etcs/pubs/.

W. Wayt Gibbs. A split at the core.  Scientific
American, 291(5):96-101, November 2004. Avail-
able from  www.sciam.com/article.cfm?articlelD=
00026625-6DF0-1179- ADF083414B7FFEQF.

Ashvin Goel, Luca Abeni, Charles Krasic, Jim Snow, and
Jonathan Walpole. Supporting time-sensitive applications
on a commodity OS. In Fifth Symposium on Operat-
ing Systems Design and Implementation (OSDI), pages
165-180, Boston, MA, December 2002. Available from
citeseer.ist.psu.edu/goelO2supporting.html.

Anoop Gupta, Andrew Tucker, and Shigeru Urushibara.
The impact of operating system scheduling policies and
synchronization methods on the performance of parallel
applications. In SIGMETRICS Measurement € Mod-
eling of Computer Systems, pages 120-32, San Diego,
CA, May 1991. Available from discolab.rutgers.edu/
classes/csb519-0ld/papers/p120-gupta.pdf.

Paul Hales. Intel’s Grove warns of the end of Moore’s Law.
www.theinquirer.net/?article=6677, December 2002.

H. Peter Hofstee. Power efficient processor ar-
chitecture and the Cell processor. In 11th In-
ternational Symposium on High-Performance Com-

puter Architecture, San Francisco, CA, February 2005.
Available from www.hpcaconf.org/hpcall/papers/25_
hofstee-cellprocessor_final.pdf.

Terry Jones, William Tuel, Larry Brenner, Jeff Fier,
Patrick Caffrey, Shawn Dawson, Rob Neely, Robert
Blackmore, Brian Maskell, Paul Tomlinson, and Mark
Roberts. Improving the scalability of parallel jobs by
adding parallel awareness to the operating system. In
15th IEEE/ACM Supercomputing, Phoenix, AZ, Novem-
ber 2003. ACM Press and IEEE Computer Society
Press. Available from www.sc-conference.org/sc2003/
paperpdfs/pap136.pdf.

Michael Kanellos. Designer puts 96 cores on single
chip. news.com.com/2100-1006_3-5399128.html, Octo-
ber 2004.

Michael Kanellos. Intel kills plans for 4GHz Pen-
tium. news.com.com/2100-1006_3-5409816.html, Octo-
ber 2004.

[26]

(27]

28]

[29]

[30]

[31]

(32]

33]

[34]

(35]

[36]

(371

[38]

Rakesh Kumar, Keith Farkas, Norman Jouppi, Partha
Ranganathan, and Dean Tullsen. A multi-core approach
to addressing the energy-complexity problem in micro-
processors. In Workshop on Complexity-Effective Design
(WCED), June 2003. Available from citeseer.ist.psu.
edu/kumarO3multicore.html.

Jason Nieh, James G. Hanko, J. Duane Northcutt, and
Gerard A. Wall. SVR4 UNIX scheduler unacceptable for
multimedia applications. In Fourth ACM International
Workshop on Network and Operating Systems Support for
Digital Audio and Video (NOSSDAV), November 1993.
Available from citeseer.ist.psu.edu/443381.html.

John. K. Ousterhout. Scheduling techniques for concur-
rent systems. In Third International Conference on Dis-
tributed Computing Systems, pages 22-30, Miami, FL,
October 1982.

Calton Pu and Robert M. Fuhrer. Feedback-based
scheduling: A toolbox approach. In IEEE, editor,
Fourth IEEE Workshop on Workstation Operating Sys-
tems (WWOS-IV), pages 124-128, Napa, CA, October
1993. IEEE Computer Society Press. Available from
ieeexplore.ieee.org/iel2/918/8054/00348177 .pdf.

Stefan Rusu. Trends and challenges in high-
performance microprocessor design. Presentation
available from www.eda.org/edps/edp04/submissions/
presentationRusu.pdf, April 2004.

Margo Seltzer and Christopher Small. Self-monitoring
and self-adapting operating systems. In Sizth Work-
shop on Hot Topics in Operating Systems (HotOS), pages
124 129, Cape Cod, MA, May 1997. Available from
www.eecs.harvard.edu/vino/vino/papers/monitor.ps.

Stephen Shankland.  Intel’s dual-core Xeon due in
2006. news.com.com/2100-1006_3-5416330.html, Octo-
ber 2004.

Stephen Shankland. Azul’s first-generation Java servers
go on sale. news.com.com/2100-1010_3-5673193.html?
tag=nl, April 2005.

Allan Snavely, Dean Tullsen, and Geoff Voelker. Symbi-
otic jobscheduling with priorities for a simultaneous mul-
tithreading processor. In SIGMETRICS Measurement &
Modeling of Computer Systems, pages 66—76, Marina Del
Rey, CA, June 2002. Available from citeseer.ist.psu.
edu/528307.html.

Allan Snavely and Dean M. Tullsen. Symbiotic job-
scheduling for a simultaneous multithreading processor.
In Ninth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems
(ASPLOS), pages 234-244, Cambridge, MA, Novem-
ber 2000. Available from citeseer.ist.psu.edu/338334.
html.

Herb Sutter. The free lunch is over: A fundamental
turn toward concurrency in software. Dr. Dobb’s Jour-
nal, 30(3), March 2005. Available from www.gotw.ca/
publications/concurrency-ddj.htm.

Leslie G. Valiant. A bridging model for parallel com-
putation. Communications of the ACM, 33(8):103-111,
August 1990. Available from portal.acm.org/citation.
cfm?id=79181&d1=ACM&coll=portal.

Haoqiang Zheng and Jason Nieh. SWAP: A scheduler
with automatic process dependency detection. In First
USENIX/ACM Symposium on Networked Systems De-
sign and Implementation (NSDI), pages 183-196, San
Francisco, CA, March 2004. Available from www.ncl.cs.
columbia.edu/publications/nsdi2004_fordist.pdf.

Proceedings of the 8th International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN’05)
1087-4089/05 $20.00 © 2005 IEEE

YF]',F.

COMPUTER

SOCIETY




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


